Acoustic backscatter properties of the particle/bubble ultrasound contrast agent.
نویسندگان
چکیده
Bubble-based suspensions with diameters in the 1-5 microns range have been developed for use as ultrasound contrast agents. Bubbles of these dimensions have resonance frequencies in the diagnostic ultrasonic range, thus improving their backscatter enhancement capabilities. The durability of these bubbles in the blood stream has been found to be limited, providing impetus for a number of approaches to further stabilize them. One of the approaches has been the development of micrometer-size porous particles or 'nano-sponges' with properties suitable for the entrapment and stabilization of gas bubbles. However, the complex morphology and surface chemistry involved in the production of this type of agent makes it unfeasible to directly measure the volume of the entrained gas. A model based on acoustic scattering principles is proposed which indicates that only a small volume fraction of gas should be necessary to significantly enhance the echogenicity of this type of particle-based contrast agent. In the model, the effective scattering cross-section is evaluated as a function of the volume fraction of gas contained in the overall scatterer and the overall scatterer diameter. Initially, the volume fraction of gas is considered as a discrete entity of single bubble. Using common mixture rules, it is then shown that the gas can be considered to be distributed throughout the particle and still arrive at a result that is similar to that for a single, discrete volume of gas. The main contribution to the increased scattering cross-section is due to the compressibility difference between gas and water. The backscatter coefficient is computed as the product of the resulting differential scattering cross-section and the scatterer number density. This approach facilitates comparison with known backscatter coefficients of biological targets such as liver and blood. Simple experimental results are presented for comparison with the model, and the implications relevant to clinical use are suggested.
منابع مشابه
Investigation of acoustic properties of silica coated gold nanoparticle as contrast agent for Ultrasonography
Interoduction: Ultrasound images have often low contrast due to small differences in acoustic impedance between different tissues. Air or gas microbubbles that surrounded by membrane are most of the contrast agents in ultrasound imaging. Problems such as instability in sound pressure and inability in penetrating from the blood vessel into body tissues limited the use of microbubbles into the in...
متن کاملBlood Brain Barrier Disruption by Focused Ultrasound and Microbubbles: A Numerical Study on Mechanical Effects
Introduction: Microbubbles are widely used as contrast agent in diagnostic ultrasound. Recently they have shown good potential for applications in the therapeutic field such as drug delivery to the brain. Recent studies have shown focused ultrasound in conjunction with injected micro-bubbles could temporarily disrupt blood-brain barrier and let therapeutic agents transport into...
متن کاملModeling and investigating the effect of ultrasound waves pressure on the microbubble oscillation dynamics in microvessels containing an incompressible fluid (Research Article)
Understanding the dynamics of microbubble oscillation in an elastic microvessel is important for the safe and effective applications of ultrasound contrast agents in imaging and therapy. Numerical simulations based on 2D finite element model are performed to investigate the effect of acoustic parameters such as pressure and frequency on the dynamic interaction of the fluid-blood-vessel system. ...
متن کاملBioeffects caused by changes in acoustic cavitation bubble density and cell concentration: a unified explanation based on cell-to-bubble ratio and blast radius.
Acoustic cavitation has been shown to load drugs, proteins and DNA into viable cells as a complex function of acoustic and nonacoustic parameters. To better understand and quantify this functionality, DU145 prostate cancer cell suspensions at different cell concentrations (2.5 x 10(5) to 4.0 x 10(7) cells/mL) were exposed to 500 kHz ultrasound (US) over a range of acoustic energy exposures (2 t...
متن کاملTechnical Note: Detection of gas bubble leakage via correlation of water column multibeam images
Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasonics
دوره 36 8 شماره
صفحات -
تاریخ انتشار 1998